Journal of Orgarzometallic Chemishy. 85 (1975) 23 1-248 0 **Ekevier Sequoia S.A., L,ausanne - Printed in The Netherlands**

SYNTHESIS OF OPTICALLY ACTIVE COBALT(SALEN) TYPE COMPLEXES **AND THEIR ASYMMETRIC REACTIVITY TOWARD PROPYLENE OXIDE**

HARUHlKO AOI, MICHIHIRO ISHIMORI, SADAO YOSHIKAWA and TEIJI TSURUTA* *Department of Synthetic Chemistry. Faculty of Engineering, Unwersity of Tokyo (Japan)* **(Received June 10th. 1971)**

Summary

An **optically active Co(I)(salen) type complex, lithium** N,N'-bis(salicylaldehyde)- $1(R)$, $2(R)$ -1,2-trans-cyclohexanediiminatocobalt(I), was prepared by reducing the Co^{II} complex, N, N'-bis(salicylaldehyde)-1(R), $2(R)$ -1, 2 -trans-cyclohexaneduminatocobalt(II), with LiAlH₁. The structure of the Co^T complex was determined on the basis of the structure of the corresponding Co^{ll} complex and was confirmed by usual physicochemical methods. Furthermore, characteristics of the absorption and circular dichroism(CD) spectra of the Co^I complex were compared with those of the reported structure of $\text{Na}^{\dagger}[\text{Co(I)}(\text{salen})]$. Highly asymmetric selectivity was found in a resolution reaction of DL -propylene oxide by use of the above optically active lithium cobalt(i) complex as a catalyst.

Introduction

The square-planar tetradentate Schiff base compleses of cobalt such as cobalosime, Co(salen), etc. have been widely studied as model compounds for coenzyme B_{12} . The formation and cleavag; of the Co-C bonding have been suggested to play significant roles in various types of reactions involving Co(salen) type complexes $[1,2]$. The highly nucleophilic character of Co^T species was reported by Schrauzer and other workers $[1,2]$. There have been few attempts, however, to apply such complexes having optically active co-planar ligands as catalysts for asymmetric reactions.

The purpose of this study is to examine the possibility of resolution reactions using an optically active Co^I complex prepared by reducing an optically active $Co^H(salen)$ type complex having a well-defined structure. This paper presents the results of studies on (i) the synthesis and structure determination of an optically active Co^{II}(salen) type complex, N, N'-bis(salicylaldehyde)-1(R), $2(R)$ -1, 2 -transcyclohexanediiminatocobalt(II), Co^{II}(sal)₂(R-CHXDA), (ii) reduction of Co^{II}- $(sal)_2(R-CHXDA)$ to the Co¹ complex, Li^t $[Co^1(sal)_2(R-CHXDA)]$, with LiAlH₄, and (iii) the resolution reaction of DL -propylene oxide by use of Li'[Co^I(sal)₂(R-CHXDA)]⁻.

ExperimentaI

(I) *Measurements*

Magnetic susceptibility measurements were carried out on Nippon-Komitsu Type 100 Electromagnet and Mettler H16GD equipment using Hg[Co(NCS)₄] as a calibrant. Absorption spectra were measured using a Shimadzu automatic recording spectrophotometer Model MPS-50L. The CD spectra were taken on a JASCO Model J-20 spectrometer. Optical rotations were observed using a JASCO Model ORD/UV-5 spectropolarimeter. Infrared spectra were measured with a Hitachi Model EDI-G3 spectrometer. GLC analyses were carried out with a Hitachi Model K-53 Gas Chromatograph equipped with a column containing PEG, Silicone GESE-30 or PEG/Silicone DC-550 (3/l mixture).

(2) *Preparation of cobalt complexes*

Reagents used were purified by usual methods, as described elsewhere [31. *l(R),2(R)-1,2-h-ens-cyclohexanediamine, (R-CHXDA).* Racemic *l,%trans*cyclohexanediamine was resolved with *d-tartaric* acid according to Asperger's method [4]. [α] $^{24}_{589}$ = $-$ 44.1 $^{\circ}$ (free diamine; 3% methanolic solution), [α] $^{14}_{589}$ = -15.8° (dihydrochloride salt; 20% aqueous solution), lit. [4] [a] $\mathrm{\hat{s}_{89}}$ = -15.8 (dibydrocbloride salt; 20% aqueous solution).

 N, N' -Bis(salicylaldehyde)-1(R),2(R)-1,2-trans-cyclohexadiimine, (salH)₂-*(R-CHXDA).* R-CHXDA and twice the number of moles of salicylaldehyde

Fig. 1. The absorption and associated CD spectra of (salH)₂(R-CHXDA).

Fig. 2. The infrared spectrum of $Co^H(sal)₂(R–CHXDA)$.

were dissolved in ethanol and stirred for 20 min at 60[°], followed by evaporation of the **solvent. Yellow needle-like crystals were obtained from a mixture of** n-hexane and cyclohexane. $[\alpha]_{589}^{25} = -644.4^{\circ}$ (1% methanolic solution). The absorption and associated CD spectra of $(salH)_2(R-CHXDA)$ are shown in Fig. 1.

 $Co^H(sal)$ ₂ ($R=CHXDA$). When the ligand $(salH)$ ₂ ($R=CHXDA$) (0.0162 mol) and anhydrous cobalt acetate (0.0162 mol) were reacted in 1-propanol (50 ml) at 60" for 1 h with stirring, orange-red powder precipitated. After cooling, it was filtered off and washed with cyclohexane. The precipitate was **purified by suspension** in refluxing 1-propanol, followed by filtration and washing with cyclohexane. All procedures were carried out under a dry nitrogen atmosphere. The infrared spectrum of the Co^{II} complex is shown in Fig. 2. (Found: C, 63.42; H, 5.08; N, 7.52. $C_{20}H_{20}N_2O_2C_0$ calcd.: C, 63.33; H, 5.31; N, 7.38%.)

 Co^I complexes, $Li⁺$ [Co(I)(sal)₂ (R-CHXDA)]⁻ and Na⁺ [Co(I)(sal)₂- $(R-\text{CHXDA})$ ⁻. Co^{II}(sal)₂ (R-CHXDA) (0.05 mmol) was suspended in solvent such as THF (50 ml), and an equimolar amount of $LiAlH₄$ or sodium sand added and stirred for 3 h at room temperature under a dry nitrogen atmosphere. A blue-green solution of the Co^I complex was obtained.

(3) *Reaction of Li+iCo(I)(sal), (R-CHXDA)]- with DL-propylene oxide*

 DL -propylene oxide (70 mmol) was added to a benzene $(10ml)/di$ oxane $(5ml)$ solution of the Co¹ complex prepared by reaction between the Co¹¹ complex (0.36 mmol) and LiAlH₄ in ratios of $1/1, 1/0.5$ and $1/0.33$. The mixture was sealed in an ampule under dry nitrogen and allowed to stand at an appropriate temperature. When DL -propylene oxide was mixed with the Co^I solution, the color of the solution changed immediately from blue-green to dark-green. No further change in color was observed during the reaction. After an appropriate reaction time, non-reacted epoxide and acetone formed were analyzed by gas chromatography. The optical rotation of the recovered propylene oxide was measured.

Results **and discussion**

(1) The structure of $Co(II)(sal)_2(R-CHXDA)$

The magnetic moment, μ_{eff} , of the Co^{II} complex measured by the method of Gouy was 2.41 B.M., indicating a low-spin square-planar structure [5] for this complex. The proposal of a square-planar structure is also supported by the absorption spectra of the Co^H complex, shown in Fig. 3, which are similar to those

Fig. 3. The absorption spectra of $Co^{\text{II}}(\text{sal})_{2}(\text{R}-\text{CHXDA}).$ **- IP** benzene soluboa ____ ia **THF solution**

of Co"(salen) [6,7], N,N'-bis(salicylaldebyde)etbylenediiminatocobalt(Ii), and $Co^H(sal)₂(-)$ (pn) [8], N,N'-bis(salicylaldehyde)(-)propylenediiminatocobalt-(D). This shows that the electronic structure around the central cobalt atom is similar to those of $Co^H(salen)$ and $Co^H(sal)$, (-) (pn).

In the R-CHXDA-Schiff base chelate, the central chelate ring is believed to be locked in the λ conformation [9] because of the steric requirement of the R-CHXDA moiety. The CD spectra of $Co^H(sal)$, $(R-CHXDA)$ shown in Fig. 4 are consistent with the λ conformation of the central chelate ring, because the CD spectra exhibit closely similar shapes but opposite sign to that of $Co^{\Pi}(sal)_{2}$ -(-) (pn). The latter Co^{II} complex was reported to possess the δ conformation of the central chelste ring [S].

From the results given above, it was concluded that $Co^H(sal)₂(R-CHXDA)$ is a low-spin square-planar cobalt^{II} complex having the λ conformation of the central chelate ring, as shown in Fig. 5.

Fig. 4. The CD spectra of $Co^H(sal)$, $(R-CHXDA)$. **-us benzene solution - -** - - m **THF solution**

Fig. 5. The structure of $\text{Col}^{\text{I}}(\text{sal})_2(\text{R}-\text{CHXDA}).$

(2) The structure of $Li⁺$ [Co^l(sal)₂ (R-CHXDA)]⁻

The absorption and CD spectra of Li^{\dagger} [Co(I)(sal)₂(R-CHXDA)]⁻ prepared by reducing $Co^H(sal)₂(R-CHXDA)$ with an equimolar amount of LiAlH₁ are shown in Figs. 6 and 7. The absorption spectrum in Fig. 6 is very similar to that of Na⁺[Co¹(salen)]⁻, observed by Calderazzo and Floriani [6]. To confirm this, $Na⁺ [Co¹(sal)$, $(R-CHXDA)⁻$ was synthesized. As shown in Fig. 6, the absorption spectrum of Na⁺[Co¹(sal), $(R-CHXDA)$ ⁻ is also similar to those of $Na⁺[Co^T(salen)]⁻$ and $Li⁺[Co^T(sal), (R–CHXDA)]⁻$. Furthermore, by comparing the CD spectrum of Li⁺[Co¹(sal), $(R-CHXDA)$ ⁻ with that of Na⁺[Co¹(sal)₂ -(R-CHXDA)]-, it can be concluded that these two complexes have almost the same structure.

(3) *Reaction of Li'[Co'(sal)2 (R-CHXDA)]- with DL-propylene oxide*

Owing to the nucleophilic character of the Co' complex [1,2], it is anticipated that kinetic resolution of a racemic substrate might be possible when an optically active cobalt(I) complex is used in a nucleophilic reaction. Resolutions of DL -propylene oxide were examined using the optically active Co^f complex, Li⁺[Co^I(sal), (R-CHXDA)]⁻ prepared by the reaction of Co^{II}(sal), (R-CHXDA) with LiAlH₁, as described in Experimental section. The results are summarized in Table 1.

Highly asymmetric selectivity was found in a series of reactions with propyl-

Fig. 6. The absorption spectra of Cof complexes. - - - - Li⁺[Co^I(sal)₂(R-CHXDA)]⁻ in THF **- Na+[Cobil),(R-CHXDA)] - in THF**

IRecycLIng numbor for Li [Co¹(eal)₂(R-CHXDA)]-. N = PO consumed/Li [Co¹(sal)₂(R-CHXDA)]-. Calcd. on the ossumption [Li⁺[Co¹(sal)₂(R-CHXDA)]] =

[LiAlH4] used. g Acotono or methyl ethyl ketone formed (mol)/PO or BO consumrd (mol) X 100. h LIAIH4 or Co11 complex wns ubed ns u cntnlyst.

ASYMMETRIC REACTION OF LI+ICO~(«al)2(R-CHXDA)] - WITH PROPYLENE OXIDE (PO) AND WITH 1,2-BUTENE OXLDE (DO) ASYMMETRIC REACTION OF LI⁺[Col(sal)₂(R-CHXDA)]⁻ WITH PROPYLENE OXIDE (PO) AND WITH 1,2-BUTENE OXIDE (BO) \mathbf{r}

TABLE 1

246

Fig. 7. The CD spectra of Co1 compleses. - - - - Li+iCo'(sal),(R_CHXDA)1- in THF $-$ Na⁺ [Co¹(sal)₂(R-CHXDA)]⁻ in THF

ene oxide, as shown by $\ll L/L + D$ (see Table 1) calculated from the optical activities of unreacted propylene oxides recovered: in particular, the selectivity, $\ll L/L + D$, for the system at the ratio Co^U/LiA!H₄ = 3.0 was 95%. The values of $\ll L$, $L + D$, however, decreased with decreasing ratio of Coⁿ/LiAlH₄; that is, the systems at the ratios of $2.0, 1.5$ and 1.0 gave in 84, 80 and 68% selectivity, respectively.

As shown in the last column of Table 1, the main reaction product was found to be acetone; at molar ratios $Co^H/LiAlH₄ = 3.0$ and 2.0, the reacted propylene oxide was isomerized to acetone quantitatively. The formation of acetone indicates that the ring opening reaction α propylene oxide takes place by a process of CH_2 -O bond cleavage, as might be expected from the nucleophilic character^{*} of the Co^I complex. The apparent lower percentages of acetone formed in the systems at the ratios $Co^H/LiAlH₄ = 1.0$ and 1.5 are considered to be due to side reactions ir,volving LiAlH, which may be present in the reaction systems because of incomplete reaction between $LiAlH₄$ and the Co^{II} comples; LiAlH₁ reacts with the acetone formed and with propylene oxide to give metal alkoxides, which may react further with propylene oxide $[10]$. The apparent lower selectivity observed in the systems at low ratios of Co^H complex to LiAlH_a described above might also be explained by such side reactions. The reaction of propylene oxide with $LiAlH₄$ in the absence of the Co^{II} complex was also examined; only 2-propanol was obtained. The Co^H complex itself did not show any reaction with propylene oside.

The above experimental results indicate that the nucleophilicity of the Co^I species is the driving force behind this asymmetric ring-opening reaction, the Co^I species being recycled as demonstrated **by the recycling** number of the catalyst, N (propylene oxide consumed/Co^l species), given in Table 1.

The reaction of 1,2-butene oxide with the $Co¹$ complex was next examined for comparison with that of propylene oxide. Highly asymmetric selectivity was found, the main reaction product being methyl ethyl ketone, the product formed by CH_2 - O bond scission. The ethyl substituent did not seem to differ significantly from a methyl substituent in terms of the asymmetric selectivity and reaction mechanism.

On the basis of the above experimental results, a probable mechanism fo: the resolution of DL -epoxide and the isomerization of epoxide to ketone may be as shown in Scheme $1. \text{Co}^1$ species attacks the β -carbon of propylene oxide by

 $^{\bullet}$ It is generally accepted that propylene oxide reacts with nucleophilic reagents mainly by CH₂ $-$ O **bond sction [111.**

an $S_N 2$ mechanism [16] (Scheme 1 A \rightarrow B); the propylene oxide moiety in B is isomerized to acetone by hydride shift involving electron transfer from the oxygen to the cobalt atom (Scheme 1 B \rightarrow C), as proposed by Schrauzer [15] in the case of β -hydroxyalkylcobaloxime. The Co^l species regenerated by this process is recycled and is available as a nucleophilic reagent to attack another molecule of propylene oside. it is considered that kinetic resolution takes place at the first stage of the above scheme; that is, the optically active Co¹ species reacts preferentially with L-propylene oxide, leaving unreacted propylene oxide containing a higher ratio of D-propylene oxide.

References

- 1 **G.N. Schnauzer. Accounts Chem. Res.. 1 (1968) 97; G.N. Schrauzer. J. Amer. Chem. Sot.. 92 (1970) 7078: IX.** Nguyen van Duong and A. Gaudemer. J. Organometal. Chem., 22 (1970) 473.
- 2 G.N. Schrauzer and R.J. Windgassen, J. Amer. Chem. Soc., 89 (1967) 143., G.N. Schrauzer, R.J. Holland and J.A. Seck, ibid., 93 (1971) 1503; **\$1. Naumberg. R. Nguyen van Duong and A. Gaudemer. J. Organometal. Chem.. 25 (1970) 231.**
- 3 J.A. Riddick and E.E. Toops, Jr., (Ed.), Technique of Organic Chemistry, VIII, Organic Solvents,
- **Incersclenc~ (1955).**
- **4 R.G. Mergerand C.F. LIU. Inorg. Chcm.. 4 (1965) 1492.**
- 5 B.N. Figgis and R.S. Nyholm, J. Chem. Soc., (1959) 338;
- M. Hartharan and F.L. Urbach, Inorg. Chem., 8 (1969) 556.
- **6 F. CJderazzo and C. Flonam. Chem. Commun.. (1967) 139.**
- **7** G. Costa. G. Nestrom **&nd L. Stefmi. .I. Orgmomeral. Chem.. 7 (1967) 193.**
- 8 C.J. *Hipp and W.A. Baker, J. Amer. Chem. Soc.*, 92 '1970) 792.
- 9 Proposed IUPAC nomenclature, Inorg. Chem., 9 (1970) 1.
- **10** Bl. ktumon. G. Hnue. **T. 'Z-t& hbkzomol Cbem.. 124 (1969) 143.**
- 11 R.E. Parker and N.S. Is acs, Chem. Rev., 59 (1959) 737; **T. '?_?uut& J. Polym. Sci Part D. 6 (1972) 179.**
- 12 C.C. Pnce and M. Osgan, J. Amer. Chem. Soc., 78 (1956) 4787.
- **13 B. Franzus and J.H. Sumdge. J. Org. Chem.. 31 (1966) 4286;**
- C.C. Price and N. Shieh, J. Grg. Chem., 24 (1959) 1169.
- **14 J.L. Coke and R.S. Shue. J. Org. Cbem.. 38 (1973) 2210.** 15 G.N. Schrauzer and J.W. Stbert, J. Amer. Chem. Soc., 92 (1970) 1022.
- 16 F.R. Jensen, V. Madan and D.H. Buchanan, J. Amer. Chem. Soc., 92 (1970) 1414.