Journal of Organometallic Chemistry, 85 (1975) 241–248 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESIS OF OPTICALLY ACTIVE COBALT(SALEN) TYPE COMPLEXES AND THEIR ASYMMETRIC REACTIVITY TOWARD PROPYLENE OXIDE

HARUHIKO AOI, MICHIHIRO ISHIMORI, SADAO YOSHIKAWA and TEIJI TSURUTA^{*} Department of Synthetic Chemistry, Faculty of Engineering, University of Tokyo (Japan) (Received June 10th, 1974)

Summary

An optically active Co(I)(salen) type complex, lithium N,N'-bis(salicylaldehyde)-1(R), 2(R)-1,2-trans-cyclohexanediiminatocobalt(I), was prepared by reducing the Co^{II} complex, N,N'-bis(salicylaldehyde)-1(R),2(R)-1,2-trans-cyclohexanediiminatocobalt(II), with LiAlH₄. The structure of the Co^I complex was determined on the basis of the structure of the corresponding Co^{II} complex and was confirmed by usual physicochemical methods. Furthermore, characteristics of the absorption and circular dichroism(CD) spectra of the Co^I complex were compared with those of the reported structure of Na⁺[Co(I)(salen)]⁻. Highly asymmetric selectivity was found in a resolution reaction of *DL*-propylene oxide by use of the above optically active lithium cobalt(I) complex as a catalyst.

Introduction

The square-planar tetradentate Schiff base complexes of cobalt such as cobaloxime, Co(salen), etc. have been widely studied as model compounds for coenzyme B_{12} . The formation and cleavag of the Co–C bonding have been suggested to play significant roles in various types of reactions involving Co(salen) type complexes [1,2]. The highly nucleophilic character of Co¹ species was reported by Schrauzer and other workers [1,2]. There have been few attempts, however, to apply such complexes having optically active co-planar ligands as catalysts for asymmetric reactions.

The purpose of this study is to examine the possibility of resolution reactions using an optically active Co^I complex prepared by reducing an optically active Co^{II}(salen) type complex having a well-defined structure. This paper presents the results of studies on (i) the synthesis and structure determination of an optically active Co^{II}(salen) type complex, N,N'-bis(salicylaldehyde)-1(R), 2(R)-1,2-transcyclohexanediiminatocobalt(II), Co^{II}(sal)₂ (R—CHXDA), (ii) reduction of Co^{II}-(sal)₂ (R—CHXDA) to the Co^I complex, Li^{*} [Co^I(sal)₂ (R—CHXDA)]⁻, with LiAlH₄, and (iii) the resolution reaction of DL-propylene oxide by use of Li^{*} [Co^I(sal)₂ (R—CHXDA)]⁻.

Experimental

(1) Measurements

Magnetic susceptibility measurements were carried out on Nippon-Komitsu Type 100 Electromagnet and Mettler H16GD equipment using Hg[Co(NCS)₄] as a calibrant. Absorption spectra were measured using a Shimadzu automatic recording spectrophotometer Model MPS-50L. The CD spectra were taken on a JASCO Model J-20 spectrometer. Optical rotations were observed using a JASCO Model ORD/UV-5 spectropolarimeter. Infrared spectra were measured with a Hitachi Model EDI-G3 spectrometer. GLC analyses were carried out with a Hitachi Model K-53 Gas Chromatograph equipped with a column containing PEG, Silicone GESE-30 or PEG/Silicone DC-550 (3/1 mixture).

(2) Preparation of cobalt complexes

Reagents used were purified by usual methods, as described elsewhere [3]. 1(R), 2(R)-1, 2-trans-cyclohexanediamine, (*R*-CHXDA). Racemic 1,2-transcyclohexanediamine was resolved with *d*-tartaric acid according to Asperger's method [4]. $[\alpha]_{389}^{24} = -44.1^{\circ}$ (free diamine; 3% methanolic solution), $[\alpha]_{589}^{24} = -15.8^{\circ}$ (dihydrochloride salt; 20% aqueous solution), lit. [4] $[\alpha]_{589}^{25} = -15.8^{\circ}$ (dihydrochloride salt; 20% aqueous solution).

N,N'-Bis(salicylaldehyde)-1(R),2(R)-1,2-trans-cyclohexadiimine, (salH)₂-(R-CHXDA). R-CHXDA and twice the number of moles of salicylaldehyde

Fig. 1. The absorption and associated CD spectra of (salH)₂(R-CHXDA).

Fig. 2. The infrared spectrum of Co^{II}(sal)₂(R-CHXDA).

were dissolved in ethanol and stirred for 20 min at 60°, followed by evaporation of the solvent. Yellow needle-like crystals were obtained from a mixture of n-hexane and cyclohexane. $[\alpha]_{589}^{25} = -644.4^{\circ}$ (1% methanolic solution). The absorption and associated CD spectra of $(salH)_2$ (R-CHXDA) are shown in Fig. 1.

 $Co^{II}(sal)_2$ (*R*-CHXDA). When the ligand (salH)₂ (R-CHXDA) (0.0162 mol) and anhydrous cobalt acetate (0.0162 mol) were reacted in 1-propanol (50 ml) at 60° for 1 h with stirring, orange-red powder precipitated. After cooling, it was filtered off and washed with cyclohexane. The precipitate was purified by suspension in refluxing 1-propanol, followed by filtration and washing with cyclohexane. All procedures were carried out under a dry nitrogen atmosphere. The infrared spectrum of the Co^{II} complex is shown in Fig. 2. (Found: C, 63.42; H, 5.08; N, 7.52. C₂₀ H₂₀N₂O₂Co calcd.: C, 63.33; H, 5.31; N, 7.38%.)

Co^I complexes, $Li^+[Co(I)(sal)_2(R-CHXDA)]^-$ and $Na^+[Co(I)(sal)_2^-(R-CHXDA)]^-$. Co^{II}(sal)₂ (R-CHXDA) (0.05 mmol) was suspended in solvent such as THF (50 ml), and an equimolar amount of LiAlH₄ or sodium sand added and stirred for 3 h at room temperature under a dry nitrogen atmosphere. A blue-green solution of the Co^I complex was obtained.

(3) Reaction of $Li^+[Co(I)(sal)_2(R-CHXDA)]^-$ with DL-propylene oxide

DL-propylene oxide (70 mmol) was added to a benzene (10ml)/dioxane (5ml) solution of the Co¹ complex prepared by reaction between the Co¹¹ complex (0.36 mmol) and LiAlH₄ in ratios of 1/1, 1/0.5 and 1/0.33. The mixture was sealed in an ampule under dry nitrogen and allowed to stand at an appropriate temperature. When DL-propylene oxide was mixed with the Co¹ solution, the color of the solution changed immediately from blue-green to dark-green. No further change in color was observed during the reaction. After an appropriate reaction time, non-reacted epoxide and acetone formed were analyzed by gas chromatography. The optical rotation of the recovered propylene oxide was measured.

Results and discussion

(1) The structure of $Co(II)(sal)_2(R-CHXDA)$

The magnetic moment, μ_{eff} , of the Co^{II} complex measured by the method of Gouy was 2.41 B.M., indicating a low-spin square-planar structure [5] for this complex. The proposal of a square-planar structure is also supported by the absorption spectra of the Co^{II} complex, shown in Fig. 3, which are similar to those

Fig. 3. The absorption spectra of Co^U(sal)₂(R—CHXDA). —— in benzene solution ---- in THF solution

of Co^{II}(salen) [6,7], N,N'-bis(salicylaldehyde)ethylenediiminatocobalt(II), and Co^{II}(sal)₂(-) (pn) [8], N,N'-bis(salicylaldehyde)(-)propylenediiminatocobalt-(II). This shows that the electronic structure around the central cobalt atom is similar to those of Co^{II}(salen) and Co^{II}(sal)₂(-) (pn).

In the R--CHXDA-Schiff base chelate, the central chelate ring is believed to be locked in the λ conformation [9] because of the steric requirement of the R-CHXDA moiety. The CD spectra of Co^{II}(sal)₂(R--CHXDA) shown in Fig. 4 are consistent with the λ conformation of the central chelate ring, because the CD spectra exhibit closely similar shapes but opposite sign to that of Co^{II}(sal)₂-(-) (pn). The latter Co^{II} complex was reported to possess the δ conformation of the central chelate ring [8].

From the results given above, it was concluded that $Co^{II}(sal)_2(R-CHXDA)$ is a low-spin square-planar cobalt^{II} complex having the λ conformation of the central chelate ring, as shown in Fig. 5.

244

Fig. 5. The structure of Coll(sal)2(R-CHXDA).

(2) The structure of $Li^+[Co^I(sal)_2(R-CHXDA)]^-$

The absorption and CD spectra of Li⁺[Co(I)(sal)₂(R—CHXDA)]⁻ prepared by reducing Co^{II}(sal)₂ (R—CHXDA) with an equimolar amount of LiAlH₄ are shown in Figs. 6 and 7. The absorption spectrum in Fig. 6 is very similar to that of Na⁺[Co^I(salen)]⁻, observed by Calderazzo and Floriani [6]. To confirm this, Na⁺[Co^I(salen)]⁻, observed by Calderazzo and Floriani [6]. To confirm this, Na⁺[Co^I(sal)₂ (R—CHXDA)]⁻ was synthesized. As shown in Fig. 6, the absorption spectrum of Na⁺[Co^I(sal)₂ (R—CHXDA)]⁻ is also similar to those of Na⁺[Co^I(salen)]⁻ and Li⁺[Co^I(sal)₂ (R—CHXDA)]⁻. Furthermore, by comparing the CD spectrum of Li⁺[Co^I(sal)₂ (R—CHXDA)]⁻ with that of Na⁺[Co^I(sal)₂ -(R—CHXDA)]⁻, it can be concluded that these two complexes have almost the same structure.

(3) Reaction of $Li^+[Co^{l}(sal)_2(R-CHXDA)]^-$ with DL-propylene oxide

Owing to the nucleophilic character of the Co¹ complex [1,2], it is anticipated that kinetic resolution of a racemic substrate might be possible when an optically active cobalt(I) complex is used in a nucleophilic reaction. Resolutions of *DL*-propylene oxide were examined using the optically active Co¹ complex, Li⁺[Co¹(sal)₂ (R-CHXDA)]⁻ prepared by the reaction of Co¹¹(sal)₂ (R-CHXDA) with LiAlH₄, as described in Experimental section. The results are summarized in Table 1.

Highly asymmetric selectivity was found in a series of reactions with propyl-

Fig. 6. The absorption spectra of Co¹ complexes. ---- Li⁺[Co¹(sal)₂(R-CHXDA)]⁻ in THF ----- Na⁺[Co¹(sal)₂(R-CHXDA)]⁻ in THF

Substrate	Co ^{[I]a} LiAlli4 (mol/mol)	Substrate/ Co ^{II} (mol/mol)	Solvent ^b	Temp. (°C)	Time (days)	Conversion ^c (%)	[a] ²⁰ d (⁰)	(4) €D> C	N L	Ketone formed (%)
PO	3.0	200	Bz/Diox	26	16	3.0	+0.42	96	18	100
PO	2.0	200	Bz/Diox	26	16	8.3	+0.93	84	34	100
PO	2.0	200	Bz/Diox	26	14	1.7	+0.78	84	28	92
PO	1.5	200	Bz/Diox	26	14	4.1	+0.30	80		53
bO	1.0	200	Bz/Diox	26	17	6.4	+0.31	68		40
PO	LANH4 ^h	100	Bz	22	15	4.6	0	0		0
PO	Coll h	100	Dz	22	15	0				0
00	2.0	200	Bz/Diox	26	16	8.5	+0.78	84	34	90
Ca	1.C	100	Bz/Dlox	24	15	14.2	+1.01	76		58
a $C_0II = C_u$ recovered. ' purity of th where $[\alpha]/I$ f Recycling i LiANHA] u	¹⁴ (sal) ₂ (R-CHX ¹² .PO (or BO) p e reacted monor col is the optici number for Lf [ad. ⁴ Accione o	(DA). b Bz = benz percent in the tota mer. The optical p al purity of the un (Co ^l (sal) ₂ (R-CH) remethyl ethyl ke	ene. Diox = diox l conversion of L unity of the reac ureacted monom XDA)] ⁻ . N = PO tone formed (mo	tane. ^c PO (or 2- and L-PO (or 1-ted moment er. [α_0] $\frac{21}{589} =$ er. [α_0] $\frac{21}{589} =$ $\frac{21}{589} =$	· B0) consume or B0). ∢L/L · is evaluated b +15° for pure t [*] [Co ^I (sal) ₂ (R consumed (m(d (mol)/PO (or BO) + $D \Rightarrow = \frac{1}{2} \{ 1 + (L - D) L + U \Rightarrow 0 + 0 = \frac{1}{2} \} $ y the eqn. $(L - D/L + 1 + 1) + 1 = 0 + 0 + 1 = 0 + 0 + 1 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$	initial (mol) X (L + D) $\}$ X 100 D) = [α_1]{ α_0] 13), [α_0] $\frac{1}{589}$ = on the essential	100. ^d Specific rott) where $(L-D/L+D)$ X {100 - (conversit = + 12.4° for pure D piton [Lt ⁺ [Co ¹ (sal)) x was used as a call	ation of PO) is the option)/(convertion)/(convertion)/(convertion)/ -1.2-BO [] 2(R-CHXD	cal don)}, 4]. A)] ⁻] =

ASYMMETRIC REACTION OF LI^{*}[Col(sal)2(R-CHXDA)]⁻ WITH PROPYLENE OXIDE (PO) AND WITH 1,2-BUTENE OXIDE (BO)

TABLE 1

246

Fig. 7. The CD spectra of Co¹ complexes. ---- Li⁺[Co¹(sal)₂(R—CHXDA)]⁻ in THF ---- Na⁺[Co¹(sal)₂(R—CHXDA)]⁻ in THF

ene oxide, as shown by $\ll L/L + D \gg$ (see Table 1) calculated from the optical activities of unreacted propylene oxides recovered; in particular, the selectivity, $\ll L/L + D \gg$, for the system at the ratio Co^{II}/LiA!H₄ = 3.0 was 95%. The values of $\ll L/L + D \gg$, however, decreased with decreasing ratio of Co^{II}/LiAlH₄; that is, the systems at the ratios of 2.0, 1.5 and 1.0 gave in 84, 80 and 68% selectivity, respectively.

As shown in the last column of Table 1, the main reaction product was found to be acetone; at molar ratios $Co^{II}/LiAlH_{1} = 3.0$ and 2.0, the reacted propylene oxide was isomerized to acetone quantitatively. The formation of acetone indicates that the ring opening reaction of propylene oxide takes place by a process of CH_2 —O bond cleavage, as might be expected from the nucleophilic character^{*} of the Co^I complex. The apparent lower percentages of acetone formed in the systems at the ratios $Co^{11}/LiAlH_4 = 1.0$ and 1.5 are considered to be due to side reactions involving LiAlH, which may be present in the reaction systems because of incomplete reaction between $LiAlH_4$ and the Co^{II} complex; LiAlH, reacts with the acetone formed and with propylene oxide to give metal alkoxides, which may react further with propylene oxide [10]. The apparent lower selectivity observed in the systems at low ratios of Co^{II} complex to LiAlH₄ described above might also be explained by such side reactions. The reaction of propylene oxide with LiAlH₄ in the absence of the Co^{II} complex was also examined; only 2-propanol was obtained. The Co^{II} complex itself did not show any reaction with propylene oxide.

The above experimental results indicate that the nucleophilicity of the Co^I species is the driving force behind this asymmetric ring-opening reaction, the Co^I species being recycled as demonstrated by the recycling number of the catalyst, N (propylene oxide consumed/Co^I species), given in Table 1.

The reaction of 1,2-butene oxide with the Co¹ complex was next examined for comparison with that of propylene oxide. Highly asymmetric selectivity was found, the main reaction product being methyl ethyl ketone, the product formed by CH_2 —O bond scission. The ethyl substituent did not seem to differ significantly from a methyl substituent in terms of the asymmetric selectivity and reaction mechanism.

On the basis of the above experimental results, a probable mechanism fo: the resolution of *DL*-epoxide and the isomerization of epoxide to ketone may be as shown in Scheme 1. Co^I species attacks the β -carbon of propylene oxide by

It is generally accepted that propylene oxide reacts with nucleophilic reagents mainly by CH₂—O bond scission [11].

an $S_N 2$ mechanism [16] (Scheme 1 A \rightarrow B); the propylene oxide moiety in B is isomerized to acetone by hydride shift involving electron transfer from the oxygen to the cobalt atom (Scheme 1 B \rightarrow C), as proposed by Schrauzer [15] in the case of β -hydroxyalkylcobaloxime. The Co¹ species regenerated by this process is recycled and is available as a nucleophilic reagent to attack another molecule of propylene oxide. It is considered that kinetic resolution takes place at the first stage of the above scheme; that is, the optically active Co¹ species reacts preferentially with *L*-propylene oxide, leaving unreacted propylene oxide containing a higher ratio of *D*-propylene oxide.

References

- G.N. Schrauzer, Accounts Chem. Res., 1 (1968) 97;
 G.N. Schrauzer, J. Amer. Chem. Soc., 92 (1970) 7078;
 K. Nguyen van Duong and A. Gaudemer, J. Organometal. Chem., 22 (1970) 473.
- 2 G.N. Schrauzer and R.J. Windgassen, J. Amer. Chem. Soc., 89 (1967) 143.,
 G.N. Schrauzer, R.J. Holland and J.A. Seck, ibid., 93 (1971) 1503;
 M. Naumhann, K. Nauman and A. Gaudamer, J. Organometal, Chem.
- M. Naumberg, K. Nguyen van Duong and A. Gaudemer, J. Organometal. Chem., 25 (1970) 231.
- 3 J.A. Riddick and E.E. Toops, Jr., (Ed.), Technique of Organic Chemistry, VIII, Organic Solvents, Interscience (1955).
- 4 R.G. Asperger and C.F. Liu, Inorg. Chem., 4 (1965) 1492.
- 5 B.N. Figgs and R.S. Nyholm, J. Chem. Soc., (1959) 338;
- M. Hanharan and F.L. Urbach, Inorg. Chem., 8 (1969) 556.
- 6 F. Calderazzo and C. Floriani, Chem. Commun., (1967) 139.
- 7 G. Costa, G. Mestroni and L. Stefani, J. Organometal. Chem., 7 (1967) 493.
- 8 C.J. Hipp and W.A. Baker, J. Amer. Chem. Soc., 92 '1970) 792.
- 9 Proposed IUPAC nomenclature, Inorg. Chem., 9 (1970) 1.
- 10 M. Ishimon, G. Huue, T. Tsuruta, Makromol. Chem., 124 (1969) 143.
- R.E. Parker and N.S. Islacs, Chem. Rev., 59 (1959) 737;
 T. Tsuruta, J. Polym. Sci. Part D, 6 (1972) 179.
- 12 C.C. Price and M. Osgan, J. Amer. Chem. Soc., 78 (1956) 4787.
- 13 B. Franzus and J.H. Surndge, J. Org. Chem., 31 (1966) 4286;
- C.C. Price and N. Shieh, J. Grg. Chem., 24 (1959) 1169.
- 14 J.L. Coke and R.S. Shue, J. Org. Chem., 38 (1973) 2210.
- 15 G.N. Schrauzer and J.W. Sibert, J. Amer. Chem. Soc., 92 (1970) 1022.
- 16 F.R. Jensen, V. Madan and D.H. Buchanan, J. Amer. Chem. Soc., 92 (1970) 1414.